Prüfungsteilnehmer	Prüfungstermin	Einzelprüfungsnummer
Kennzahl: | |
Kennwort: | Frühjahr 2010 | 46116
Arbeitsplatz-Nr.: | |

Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen
— Prüfungsaufgaben —

Fach: Informatik (Unterrichtsfach)
Einzelprüfung: Softwaretechnologie/Datenbanksysteme
Anzahl der gestellten Themen (Aufgaben): 2
Anzahl der Druckseiten dieser Vorlage: 9

Bitte wenden!
Thema Nr. 1

Aufgabe 1: Modellierung eines Reiseunternehmens

Es sei folgender Sachverhalt gegeben:
An einer Reise können mehrere Teilnehmer teilnehmen, ein Teilnehmer kann auch an verschiedenen Reisen teilnehmen.

c) Implementieren Sie die in Aufgabenteil b) modellierten Klassen in Java. Fügen Sie eine Methode hinzu, die einen Teilnehmer von einer Reise entfernt. Dabei soll automatisch der erste Platz der Warteliste zu einem Reiseteilnehmer werden, wenn die Warteliste nicht leer ist. Achten Sie auf die Navigierbarkeit Ihrer Assoziationen. Sie können davon ausgehen, dass die Methode nur mit Teilnehmern aufgerufen wird, die in der Tat Teilnehmer der Reise sind.
Aufgabe 2:

1. **Relationale Algebra**

Notation: π = Projektion; σ = Selektion; \bowtie = Join; \times = kartesisches Produkt; \(\setminus\) = Mengendifferenz; \cap = Schnittmenge; \cup = Vereinigungsmenge; ρ = Umbenennen; $+=$ = relationale Division

a) Beschreiben Sie ein vollständiges SQL-Statement (oder mehrere) und geben Sie an, welche Klausel mit welcher Operation aus der relationalen Algebra korrespondiert (alle Operationen müssen verwendet werden). Bedenken Sie, dass einige Operatoren an mehreren Stellen vorkommen können.

b) Definieren Sie die mengenwertige Operation „Division“. Auf welche Grundoperation kann die Division zurückgeführt werden und wie? Ein Beweis ist nicht erforderlich.

2. **Transaktionen und Transaktionsverarbeitung**

a) Nennen und definieren Sie die vier wesentlichen Merkmale einer Datenbanktransaktion.

b) Erklären Sie steal, no-steal, force, no-force im Zusammenhang mit der Fehlerbehandlung.

c) Fassen Sie die vier Kombinationen von force/no-force, steal/no-steal hinsichtlich der Anforderungen an die Redo- und Undo-Recovery auf folgende Weise zusammen:

<table>
<thead>
<tr>
<th></th>
<th>Force</th>
<th>No-Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steal</td>
<td>• Kein Redo</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>• Undo</td>
<td>•</td>
</tr>
<tr>
<td>No-Steal</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Übertragen Sie die Tabelle und ergänzen Sie diese.

Fortsetzung nächste Seite!
3. **ER-Modellierung und Relationenmodell**

 Szenario: Sie sollen ein System zur Verwaltung von Firmen entwerfen.

 - Eine Firma ist eindeutig bezeichnet durch ihre Handelsregisternummer. Daneben hat sie einen Namen und eine Adresse, die sich aus Straße, Hausnummer, Ort und Postleitzahl zusammensetzt.
 - Firmen bestehen aus Abteilungen. Eine Firma kann dabei aus mehreren Abteilungen bestehen, eine Abteilung kann jedoch immer nur zu einer Firma gehören. Es kann Firmen geben, die nicht in Abteilungen eingeteilt sind, aber jede Abteilung gehört zu einer Firma. Abteilungen haben eine eindeutige AbteilungsID und einen Namen.
 - Firmen beschäftigen Mitarbeiter. Ein Mitarbeiter kann nur für eine Firma arbeiten, eine Firma aber beliebig viele Mitarbeiter haben. Ein Mitarbeiter hat eine eindeutige Sozialversicherungsnummer (SVN), einen Namen (bestehend aus Name und Vorname), ein Geburtsdatum und ein Alter, das sich aus dem Geburtsdatum errechnet. Daneben hat ein Mitarbeiter eines oder mehrere Spezialgebiete, auf dem bzw. denen er Fachmann ist.

 a) **ER-Modellierung:**

 b) **Relationenmodell:**

 Überführen Sie das ER-Modell in ein Relationenschema.

 Notation: Unterstreichen Sie Primärschlüssel; kennzeichnen Sie Fremdschlüssel durch Angabe der referenzierten Relation in eckigen Klammern.

 Beispiel:

 Author(AID, Name)
 Buch(ISBN, Schriftsteller[Autor])

 Fortsetzung nächste Seite!
4. SQL

Ein Internetauktionshaus nutzt eine relationale Datenbank zum Speichern seiner relevanten Daten. Angenommen ist folgender Auszug aus dem Tabellenschema zu den Benutzern, Auktionen und Geboten:

User(UId, Name,...)
Auction(AId, Name, Begin_Auction, End_Auction, Seller[User], ...)
Bid(UId, AId, Bid_Time, Amount)

Das Auktionshaus will ein Bewertungssystem einführen, um die Risiken für Verkäufer eindämmen zu können. Folgende Tabelle soll zu den existierenden Tabellen hinzugefügt werden:

Review(RId, AId[Auction], BuyerID[User], Rating, Rating_Time)

RId, AId und BuyerID sind beliebige ganzzahlige Datentypen, Rating ist ein ganzzahliger Datentyp, der die Werte 1,2,3,4,5 annehmen kann, und Rating_Time ist ein timestamp. RId ist Primärschlüssel und die beiden Fremdschlüssel dürfen nie leer sein.

a) Geben Sie das vollständige CREATE-Statement zum Anlegen von Review an, das möglichst viele Constraints erfüllt.

b) Erstellen Sie eine Sicht mit dem Namen Auction_Review mit den Attributen (AId, UId, Durchschnittsrating):
 Zu jeder Auktion (gekennzeichnet mit AId) soll das DurchschnittsRating jedes Nutzers (UId) angegeben werden, der auf diese Auktion geboten hat. Die Durchschnittsratings sollen auf allen Ratings des Nutzers basieren, die zeitlich vor Ende der betrachteten Auktion vergeben wurden.

c) Erstellen Sie eine Sicht mit dem Namen Auction_Max_Amount mit den Attributen (AId, MaxAmount):
 Zu jeder abgeschlossenen Auktion (aktueller Zeitpunkt mit sysdate()) soll der größte gebotene Betrag angegeben werden.
Thema Nr. 2

Aufgabe 1: Systementwurf und Programmierung: Objektorientierte Softwareentwicklung

b) Implementieren Sie die Klasse Konferenz mit einer Methode findeTeilnehmendeAutoren, die alle Personen zurückgibt, die sowohl autor für die Konferenz sind als auch an der Konferenz teilnehmen. Implementieren Sie dazu auch alle Klassen und Assoziationen aus Ihrem Klassendiagramm, die Sie für Ihre Implementierung benötigen.

Der Rückgabetyp der Methode findeTeilnehmendeAutoren kann z. B. ein beliebiger Collectiontyp (in Java beispielsweise Collection, in C++ beispielsweise Vector) sein.

Geben Sie an, welche Sprache Sie gewählt haben.

c) Gegeben sei folgendes Primärszenario einer erfolgreichen Einreichung zu einer Konferenz:

Geben Sie für dieses Szenario ein Sequenzdiagramm an.

Es ist nicht notwendig, dass die verwendeten Methoden im Klassendiagramm aus Teilaufgabe a) enthalten sind.

Fortsetzung nächste Seite!
Aufgabe 2:

1. Integritätsbedingungen

Eine Aufgabe von Datenbankmanagementsystemen ist die Erhaltung der Datenintegrität.

a) Welche Arten von Integritätsbedingungen gibt es?
b) Geben Sie für jede Art von Integritätsbedingung je ein Beispiel an.

2. Modellierung

Der Veranstalter der Ausstellung "Becit" möchte diese in einer relationalen Datenbank verwalten:

Zu jedem Ausstellungsraum gibt es eine eindeutige Raumnummer (RNr). Ein Raum hat eine bestimmte Fläche (in m²), eine Höhe (in m) und zusätzliche Sonderausstattungen wie Beamer, Fernseher, Stühle, Bänke, usw. Die Ausstellungsstände werden in Räumen aufgestellt. Es hat sich eingebürgert, den Ständen innerhalb von Räumen Buchstaben zuzuordnen (SlD). So ist beispielsweise "Stand 3B" der 3. Stand in Raum 2. Zu Ständen ist bekannt, wieviel Fläche (in m²) sie benötigen, die Anzahl benötigter Tische und Stühle und möglicherweise benötigte Sonderausstattungen des entsprechenden Raumes.

Die Stände werden dann den Anbietern zugeordnet. Für die Anbieter werden eindeutige IDs vergeben. Zusätzlich sind von den jeweiligen Name, Adresse und Telefonnummer bekannt.

Zu beachten ist insbesondere, dass sämtliche Personen des Personals auch mehrere Aufgaben übernehmen können, d.h. sie können beim Aufbau mithelfen, zusätzlich während der Ausstellung für die Sicherheit sorgen und am Ende ggf. die Räume mit reinigen.

a) Entwerfen Sie für das beschriebene Szenario ein ER-Diagramm. Bestimmen Sie hierzu

- die Entity-Typen, die Relationship-Typen und jeweils deren Attribute;
- ein passendes ER-Diagramm;
- die Primärschlüssel der Entity-Typen, welche Sie anschließend in das ER-Diagramm eintragen;
- die Kardinalitäten der Relationship-Typen, welche Sie ebenfalls in das ER-Diagramm eintragen.

Fortsetzung nächste Seite!
b) Überführen Sie das ER-Modell aus Aufgabe a) in ein verfeinertes relationales Modell. Geben Sie hierfür die verallgemeinerten Relationenschemata an.

c) Bei den Zuordnungen der Sonderausstattungen kann es zur Verletzung einer Integritätsbedingung kommen.

i) Begründen Sie, woran dies liegt.

ii) Wie lässt sich das Problem innerhalb einer Datenbank verhindern?

3. Normalformen

Gegeben sei das folgende Relationenschema

\[Kaeufe: \{ [ArtikelId, ArtikelBezeichnung, EinkaufsPreis, VerkaufsPreis, Datum, TagesAktion, KundeName, KundeVorname, KundeGebdatum, Filiale, Verkäufer] \} \]

und eine Menge \(F \) von funktionalen Abhängigkeiten. **Hinweis:** Die Abkürzungen innerhalb der Menge \(F \) beziehen sich auf die Großbuchstaben in den Attributnamen der Relation \(Kaeufe \).

\[F := \{ \]
\[AI \to AB \]
\[AI, AB \to EP \]
\[KN, KV \to KG \]
\[AI, D, KN, KV \to V \]
\[AI, AB, KN, KV, D, V \to F, VP \]
\[D \to TA \]
\[V \to F \]
\[\} \]

a) Ermitteln Sie sämtliche Schlüsselkandidaten von \(Kaeufe \).

b) Zeigen Sie, dass das Relationenschema \(Kaeufe \) nicht in dritter Normalform ist.

c) Bestimmen Sie eine kanonische Überdeckung \(F_c \) zu \(F \).

4. SQL und Relationale Algebra

Gegeben sei folgendes Schema der relationalen Datenbank eines Aktienhändlers:

\[\text{Aktie}\{\text{ANr, Name, Firma[Firma], Ausgabedatum, Ausgabepreis}\} \]

\[\text{Aktienkurs}\{\text{ANr[Aktie], Datum, Zeit, Wert}\} \]

\[\text{Firma}\{\text{Name, Adresse, Telefon}\} \]

\[\text{Kunde}\{\text{KndNr, Name, Geburtsdatum, Telefon}\} \]

\[\text{Konto}\{\text{KntNr, KndNr[Kunde], Eroeffnungsdatum, Saldierungsdatum}\} \]

Fortsetzung nächste Seite
Buchung{KntNr[Konto], BNr, ANr[Aktie], Aktienzahl, EKdatum, EKzeit, EKpreis, VKdatum, VKzeit, VKpreis}

a) Formulieren Sie die Anfragen in den folgenden Teilaufgaben (i - ii) in der Anfragesprache SQL. Zur Vereinfachung dürfen Sie sich beliebige Sichten (Views) definieren.

i) Gesucht sind alle Aktienanteile, welche Kunde "Müller" aktuell hält. Geben Sie für diese Kontonummer, Buchungsnummer, Aktiennummer und die zugehörigen Firmennamen aus.

b) Formulieren Sie folgende Anfrage in der relationalen Algebra:

Für welche Firmen hat sich der Aktienkurs im 1. Jahr nach der Ausgabe mindestens verdoppelt?